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Outline of the talk

1 A brief account of my scienti�c interests;

2 Elementary concepts about the Extreme Value Theory (EVT);

3 Methods for estimating the parameters of the generalized
Pareto distribution (GPD);

4 Application of the extreme value theory to some �nancial data.

5 Comments and some conclusions.
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A brief account of my scienti�c interests

EVT - application point of view.

• Forest �res - the area burned by large wild�res that occurred in
Portugal between 1984 and 2004;

• Medical sciences - the large total cholesterol levels observed in
the 20 districts of Portugal;

EVT - theoretical approach - review of methods to estimate
the parameters of the generalized Pareto distribution (GPD). It
was a joint work with Samuel Kotz (2010 a) and b)).

Bayesian hierarchical models for modeling wild�res.

Nonlinear time series models.
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Examples of extreme events

Very extreme events (large or small) frequently happen in various
areas such as

Economy - sudden changes in some economical variables due,
for instance, to political measures;

Finance - abrupt “jumps"observed in the stock market;

Wild�res;

Meteorology - rainfall (�oods / droughts), extreme wind
events (e.g., hurricanes, tornados); temperatures (high / low).

Geology / Seismic activity - earthquakes;

Hydrology - river level (high / low);

Oceanography - sea level.
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Examples of extreme events

Floods

Figure 1: Flood occurred in Madeira, Portugal, February 2010

Source: Google images
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Examples of extreme events

Severe droughts

Figure 2: Severe drought in Canada (right)

Source: Google images
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Examples of extreme events

Hurricanes

Figure 3: Sky of Mississipi (USA) during the Hurricane Katrina, August
2005

Source: Google images
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Examples of extreme events

Earthquakes

Figure 4: Niigata-Ken Chuetsu, Japan, 2004

Source: Google images
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Examples of extreme events

Portuguese Stock market Index (PSI 20)
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Figure 5: Daily log-returns at closing time, from 24 January 2000 to 29 April 2011

Questions that can be raised:

• What is the probability that the maximum value observed will be surpassed in

the future?

• Are the large negative log-returns similar to the large positive log-returns?
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Basics about the EVT

Let X1, X2, ..., Xn be n independent and identically distributed (iid)
random variables (rvs) with unknown cumulative distribution
function (cdf) F . The objective might be to make inferences about
the probability that the rv X will exceed a large value x . Then,
attention focuses on estimating tail probabilities

P(X > x) = 1− F (x).

We may also be interested on estimating extreme quantiles. In this
situation the issue lies on determining a real number xq such that:

P(X > xq) = 1− F (xq) = q,

for a very small probability q. Commonly values of q much smaller
than 1/n are the most interesting to consider.
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What is the distribution of the maximum?

Let {X1,X2, ...} be again iid rvs with unknown cdf F . The cdf of
Mn = max(X1,X2, ...,Xn) is given by

FMn
(x) = P(Mn ≤ x) = P(X1 ≤ x ,X2 ≤ x , ...,Xn ≤ x)

=
n∏

i=1

P(Xi ≤ x) = [F (x)]n.

What are the problems?

1 if F is unknown, how can we possibly �gure out the
distribution of the maximum of the n rvs?

2

lim
n→∞

FMn
(x) = lim

n→∞
[F (x)]n =

{
0 ,F (x) < 1
1 ,F (x) = 1

How can we overcome these issues?
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What is the distribution of the maximum?

If {an > 0} and {bn} are sequences of constants (attraction
coe�cients) such that:

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= lim

n→∞
F

n(anx + bn) = G (x),

then G (.), which is a non-degenerate cdf, belongs to one of the following
families:

Type I - Gumbel

Type II - Fréchet

Type III - Weibull
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What is the distribution of the maximum?

These three distribution can be uni�ed in terms of the Generalized
Extreme Value distribution (GEV) with cdf given by:

G (x | ξ, µ, σ) = exp

[
−
(
1− ξ

x − µ

σ

)1/ξ
]
, 1− ξ

x − µ

σ
> 0,

where ξ, µ (ξ, µ ∈ R) and σ (σ > 0) are respectively the shape, the
location and the scale parameters. In the previous theorem, if G is
given as above, then the df F is said to belong to the domain of
attraction of the GEV distribution.

Distribution Domain of attraction ξ Type of distributions

Uniform and Beta Weibull ξ > 0 short-tailed
�nite upper bound µ+ σ/ξ

Exponential, Gamma, Gumbel ξ = 0 light to reasonably heavy
Normal and Lognormal
Pareto, Loggamma, Fréchet ξ < 0 heavy-tailed
t-Student and Burr

Table 1: Some common distributions and their domains of attraction
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Heavy-tailed distributions

Heavy tailed occur quite frequently when modeling e.g.

insurance claims;

stock market gains and losses.

Heavy tailed distribution or subexponential distributions, using
insurance terminology, can be expressed as

lim
x→∞

P
(∑n

i=1 Xi > x
)

P
(
max(X1,X2, ...,Xn) > x

) = 1,∀n ≥ 2

Meaning:

The tails of the distribution of the sum and of the maximum of the
�rst n claims have, asymptotically, the same order (see Embrechts
et al. (2003)).
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The Annual Maxima Method

The annual maxima method consists on partitioning an iid sample
in blocks of equal size and retrieving the maximum in each block.
In general the blocks consist on the observations recorded during
the period of one year, although other options are possible.
The sample of maxima is supposed to follow the GEV distribution,
as the sample size increases.

Drawbacks

1 sometimes the temporal structure of the underlying
phenomenon is not obvious;

2 waste of information;

3 slow convergence rate to the GEV observed in some
distributions.

There is also the method of the largest observations.
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The POT

The Peaks over threshold (POT) consists on �tting a model to the
excesses (or exceedances) above a su�ciently high threshold u.
This sample of excesses is distributed according to the GPD
[Pickands (1975)]. The cdf of the GPD is given by

F (x | k , σ) =

{
1−

(
1− kx

σ

)1/k
, k ̸= 0

1− exp(− x
σ ) , k = 0

where σ > 0 and k ≤ 0, x > 0, while for k > 0 the range is
0 < x < σ/k . The quantities k and σ are known as the shape and
the scale parameters of the GPD, respectively. When k < 0 the
GPD is usually known as the Pareto distribution.
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Excesses - example
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Figure 6: Simulated sample of size n = 100 from the model
Xi = 0.7 ∗ Xi−1 + ei , ei ∼ N(0,
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Various visual aspects of the GPD
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Figure 7: Pdf of the GPD for several values of k (σ = 1)
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Some descriptive ways of assessing tail weight

Histogram of the data (or the histogram of the logarithm of
the data if there are very large observations in the sample);

QQ-plot;

It consists on plotting the ascending ordered observations,
(x1:n, x2:n, ..., xn:n), vs. the model quantile function,
Q(p) = F−1(p),

(F−1(pi :n), xi :n), i = 1, 2, ..., n,

where pi :n = i
n+1 are the plotting positions (several other choices of

plotting positions are available in the literature).

1 The linearity of the QQ-plot supports the (alleged) model.

2 The non-linearity of the QQ-plot indicates that the data has a
heavier or a lower tail than the model considered.
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Expressions for the QQ-plot

Distributions Plot
Gumbel (− log(− log(pi :n)), xi :n)

Exponential (− log(1− pi :n), xi :n)
Pareto (− log(1− pi :n), log(xi :n))
Normal (Φ−1(pi :n), xi :n)

Lognormal (Φ−1(pi :n), log(xi :n))

Table 2: Some examples
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Figure 8: Exponential QQ-plot (exponential sample n = 250)
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Quantile estimation using the POT/GPD

Once the parameters k and σ are estimated, the tail of the
distribution can be calculated from the relation:

P(X > zp) = P(X > x + u | X > u)P(X > u),

where zp = x + u is a very large number.

• the P(X > x + u | X > u) is estimated by the GPD, as
mentioned before;

• the P(X > u) is, in general, estimated by r
n
, where r is the

number of observations in a sample of size n that exceed the
threshold u.

zp =

 u + σ
k

[
1−

(
pn

r

)k]
, k ̸= 0

u + σ
(
− log pn

r

)
, k = 0
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The selection of an adequate threshold

The choice of u (equivalently r) can be very tricky!

• Du Mouchel [Du Mouchel (1983)] suggests choosing 10% of
the sample size as the number of upper order statistics, or,
equivalently, a threshold equal to the 90th sample quantile;

• There are, in the literature, some algorithms to choose r (see
e.g. Beirlant et al. (2004));

• Graphical

• plot an estimator of k as a function of u = xn−r :n or as a
function of r ;

• use the empirical mean excess function (MEF). The theoretical
MEF is de�ned as

e(u) = E (X − u | X > u) .
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The Mean Excess Function

Why is the MEF used as a technique to assess the validity of the
GPD model?

For the GPD(k , σ), the MEF is given by

e(u) = E (X − u | X > u) =
σ − uk

1+ k
, k > −1, u > 0, σ − ku > 0.

In applications, the sample MEF should be plotted as a function of

u = xn−r :n, where r is the number of upper order statistics and is
given as

en(u) =

∑n
i=1(Xi − u)I (Xi > u)∑n

i=1 I (Xi > u)
,

where I (.) is the indicator function.
(choose u such that en(x) is approximately linear for x ≥ u.)
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The Mean Excess Function

• The MEF is constant for the exponential distribution;

• The MEF ultimately increases for distributions that are
heavier-tailed than the exponential distribution;

• The MEF ultimately decreases for distributions that are
lighter-tailed than the exponential distribution.
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Figure 9: MEF of several common distributions (u is the threshold)
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Applications of the GPD

The GPD is extensively used in applications in several areas, such
as:

• Engineering - turbine data, active sonar, steel industry, fatigue
of materials;

• Environment - avalanches;

• Economy/Finance - interest rates, stock market indexes;

• Hydrology - river discharge, �oods and droughts, sea level,
wave height;

• Insurance - �re losses, windstorm losses;

• Wheather/Climatology - rainfall, dry spells, hurricanes, wind
speed, wind velocity, wind speed gusts;

• Forest �res - area burned;

• Seismology - earthquake energy.

(see de Zea Bermudez and Kotz (2010 a)) for various applications).
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Methods for GPD parameter estimation

Methods reviewed in the two papers:

• Classical methods of maximum likelihood (ML), moments
(MOM) and probability weighted moments (PWM);

• Generalized versions of the PWM (GPWM) and MOM;

• L-moments and higher order L-moments;

• Partial PWM and partial L-moments;

• Hybrid MOM and PWM approaches;

• Penalized ML;

• The least squares;

• Robust approaches - e.g. the elemental percentile method
(EPM) and the median estimators;

• Bayesian approaches - e.g. using independent Je�reys' priors
for the parameters, Pareto/Gamma for heavy-tailed
distributions and Gamma/Gamma for the lighter-tailed;

• Estimation methods embedded in the POT approach.
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Methods for GPD parameter estimation

PWM estimators

Mp,r ,s = E
{
X p

[
F (X )

]r [
1− F (X )

]s}
, r , p, s ∈ R.

For the GPD(k , σ), σ > 0, it is usual to consider,

αs = M1,0,s = E
{
[X

[
1− F (X )

]s}
=

σ

(s + 1)(s + 1+ k)
,

where k > −1 and s is a non-negative (small) integer value. The
following expressions are obtained:

k =
α0

α0 − 2α1
− 2;σ =

2α0α1

α0 − 2α1
.

The obvious estimate for αs is α̂s =
1
n

∑n
i=1 xi :n(1− pi :n)

s , for

s = 0, 1 and the recommended plotting positions are
pi :n = i−0.35

n
, i = 1, 2, ..., n.
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Methods for GPD parameter estimation

GPWM estimators

Rasmussen (2001) argued that the choice indicated previously is
basically driven by analytical simplicity. His proposal is to consider
the GPWMs. Using the quantile function instead we get:

M1,r ,s =

∫ 1

0
x(F )F r (1− F )sdF .

For the GPD(k ,σ) we get

M1,r ,s =
σ

k

[
B(r + 1, s + 1)− B(r + 1, s + k + 1)

]
,

where B(., .) stands for the Beta function. These moments exist
provided r > −1, s > −1 and k > −1− s.
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Methods for GPD parameter estimation

GPWM estimators

k̂ =
α̂s1(s1 + 1)2 − α̂s2(s2 + 1)2

α̂s2(s2 + 1)− α̂s1(s1 + 1)
, s1 > −1

and
σ̂ = α̂s2(s2 + 1)(s2 + 1+ k̂), s2 > −1

where αs1 and αs2 are the PWM estimators αs = M1,0,s .

Empirical way of choosing s1 and s2:

s1 =
{ −0.5 , k ≤ 0

k − 0.25 , 0 < k < 0.10
−0.15 , k ≥ 0.10

s2 =
{

c , k ≤ −0.25
c − (k + 0.25)(c + 0.15)/0.35 ,−0.25 < k < 0.10
−0.151 , k ≥ 0.10

where c = −0.92+ 0.64 lnT and T is the return period.
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Methods for GPD parameter estimation

EPM estimators - proposed by Castillo and Hadi (1997).

1 Initial estimates:

k̂(i , j) =
ln
(
1− xi :n

δ̂(i ,j)

)
Ci

and
σ̂ = δ̂(i , j)k̂(i , j)

where Ci = ln(1− pi :n) = ln(1− i/(n + 1)) and δ(i , j) is the

solution of the equation

xi :n
[
1− (1− pj :n)

k
]
= xj :n

[
1− (1− pi :n)

k
]

for every i and j (i = 1, 2, ..., n − 1)
Authors suggestion - j = n.

2 Final estimates:
k̂ = median(k̂(i , n)) and σ̂ = median(σ̂(i , n)),i = 1, 2, ..., n-1.
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Methods for GPD parameter estimation

Even though all the methods were never jointly compared, and we
did not perform any such simulations, we tried to put together the
results of separate six simulation studies (some of those quite
extensive) carried out by several authors and improve the few
"practical rules"that exist in the literature. Our proposed guidelines
were:

• The GPWM is recommended for k < 0. The GPWM dominates over the PWM
method for negative k (the range where PWM traditionally worked the best).

The EPM is suggested for heavier tails (k < −0.5).

The use of the GMOM (for estimating k) and the ML methods might also be an
option to consider in the range,say −0.4 ≤ k < 0. Ashkar and Tatsambon
(2007) suggest ML, provided interest focuses on estimating quantiles with
return period smaller than the sample size.
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Methods for GPD parameter estimation

• LS method is the suggested method for k > 0 (from small to moderate sample
sizes).

Alternatively EPM might be used (for any sample size).

According to Ashkar and Tatsambon (2007), the ML method might also be a
possibility (up to k = −0.4 and considering that interest focuses on estimating
quantiles with return period smaller than the sample size). Again, we could not
de�nitely favor one method over the others.

• For k > 0.2 the ML estimation might be used.

For larger values of k (k > 0.4), the EPM is possibly the best option.

32 / 46



P. de Zea Bermudez (Universidad Carlos III - Getafe, 17th June 2011)

Case study

Data: values of the PSI 20, at closing time, from 24 January 2000
to 29 April 2011.
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Figure 10: Daily values of the PSI 20 at closing time (left) and
corresponding log-returns (right)

Log-returns: Rt = log
(
Xt+1

Xt

)
, where Xt is the value of the PSI 20
at time t.
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Case study (cont.)

The data exhibits the usual characteristics of �nancial data
(nonlinearity and heavy-tailed behavior).
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Figure 11: ACFs of the log-returns (left), of the squared log-returns
(centre) and of the absolute values (right)
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Case study (cont.)

The log-returns were considered and the positive log-returns (right
tail) were separated from the negative ones (left tail).

 

Interval

A
bs

ol
ut

e 
Fr

eq
ue

nc
y

0.00 0.02 0.04 0.06 0.08 0.10

0
20

0
40

0
60

0
80

0

0.00 0.02 0.04 0.06 0.08 0.10

Log−returns

0.00 0.02 0.04 0.06 0.08 0.10

2
4

6
8

Ordered sample

E
xp

on
en

tia
l q

ua
nt

ile
s

 

Interval

A
bs

ol
ut

e 
Fr

eq
ue

nc
y

0.00 0.02 0.04 0.06 0.08 0.10

0
20

0
60

0
10

00

0.00 0.02 0.04 0.06 0.08 0.10

Log−returns

0.00 0.02 0.04 0.06 0.08 0.10

0
2

4
6

Log ordered sample

E
xp

on
en

tia
l q

ua
nt

ile
s

Figure 12: Histograms, Box-plots and Exponential QQ-plots of the
absolute values of the negative (top row) and of the positive (bottom
row) log-returns
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Case study (cont.)

Descriptive statistics

Statistics Left tail Right tail

n 1352 1445
Mean 0.008354 0.007479
St Dev 0.009036 0.007998
Min 0.000005 0.000005
q0.01 0.000105 0.000088

| x1:n − q0.01 | 0.000100 0.000083
q0.99 0.043342 0.033341
Max 0.103792 0.101959

xn:n − q0.99 0.060450 0.068618

Table 3: Descriptive statistics - left and right tails of the log-returns
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Case study (cont.)
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Figure 13: Pareto QQ-plots for several thresholds - positive log-returns
(top row) and absolute values of the negative log-returns (bottom row)
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Case study (cont.)
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Figure 14: MEF of the absolute values (top left) and the positive (top
right) log-returns; plot of the ML estimates of k the absolute values
(bottom left) and the positive (bottom right) log-returns
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Case study (cont.)

Moments estimator for ξ = −k (k ∈ R) (Dekkers and de Haan
(1989))

ξ̂ = M
(1)
n + 1− 1

2

1−

[
M

(1)
n

]2
M

(2)
n


−1

where
M

(2)
n =

1

m

m−1∑
i=0

(logXn−i :n − logXn−m:n)
2 .
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Figure 15: Plots of the estimates of ξ = −k produced by the moments
estimator for the absolute values (left) and for the positive (right)
log-returns
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Case study (cont.)

Most appropriate methods: ML, (PMW) GPWM and EPM.

r ML EPM PWM GPWM

% k̂ σ̂ k̂ σ̂ k̂ σ̂ k̂ σ̂
200 -0.288 0.00539 -0.382 0.00508 -0.286 0.00545 -0.237 0.00589
13.8 0.083 0.00539 0.064 0.00056 0.094 0.00062 0.076 0.00071
250 -0.194 0.00620 -0.303 0.00625 -0.160 0.00654 -0.117 0.00723
17.3 0.064 0.00620 0.060 0.00050 0.075 0.00064 0.058 0.00057
275 -0.181 0.00627 -0.282 0.00654 -0.143 0.00700 -0.118 0.00716
19.0 0.060 0.00058 0.052 0.00055 0.071 0.00062 0.055 0.00059
300 -0.146 0.00672 -0.254 0.00707 -0.080 0.00700 -0.086 0.00760
20.8 0.054 0.00059 0.053 0.00052 0.066 0.00065 0.040 0.00057
325 -0.153 0.00653 -0.276 0.00641 -0.106 0.00700 -0.108 0.00721
22.5 0.053 0.00055 0.052 0.00052 0.064 0.00059 0.052 0.00052

Table 4: Models for the positive values of the log-returns of the PSI 20 (r
= number of upper order statistics); r = 250 corresponds to a threshold
of u ≈ 0.013

The values in all the second lines correspond to the standard errors of the estimates.
For the EPM and for the GPWM m = 1000 bootstrap samples were used. A return
period of T = 1000 was used.

Best method: GPWM.
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Case study (cont.)

Most appropriate methods: GPWM

What are the consequences on the estimates of the GPD if other
values of T are considered?

r Estimate T = 50 T = 100 T = 1000

200 k̂ -0.26 -0.25 -0.24
σ̂ 0.0056 0.0057 0.0059

250 k̂ -0.18 -0.16 -0.12
σ̂ 0.0065 0.0067 0.0072

275 k̂ -0.17 -0.16 -0.12
σ̂ 0.0066 0.0067 0.0072

300 k̂ -0.15 -0.13 -0.09
σ̂ 0.0069 0.0071 0.0076

325 k̂ -0.15 -0.14 -0.11
σ̂ 0.0067 0.00688 0.0072

Table 5: Models for the positive values of the log-returns of the PSI 20
considering other return periods
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Case study (cont.)

Most appropriate methods: ML, (PWM) GPWM and EPM.

ML EPM PWM GPWM

r k̂ σ̂ k̂ σ̂ k̂ σ̂ k̂ σ̂
50 -0.094 0.01015 -0.342 0.00904 -0.106 0.01003 -0.109 0.00977
3.7 0.149 0.01015 0.010 0.00277 0.164 0.00218 0.011 0.00304
75 -0.086 0.01001 -0.298 0.00897 -0.098 0.00988 -0.095 0.00977
5.5 0.122 0.01001 0.010 0.00201 0.133 0.00176 0.010 0.00220
100 -0.107 0.00937 -0.289 0.00848 -0.126 0.00917 -0.125 0.00898
7.4 0.112 0.00937 0.009 0.00166 0.116 0.00142 0.009 0.00179
125 -0.079 0.00968 -0.256 0.00881 -0.081 0.00967 -0.073 0.00972
9.2 0.093 0.00968 0.010 0.00147 0.103 0.00133 0.010 0.00145
150 -0.142 0.00843 -0.280 0.00780 -0.165 0.00819 -0.173 0.00784
11.1 0.099 0.00843 0.008 0.00122 0.097 0.00104 0.008 0.00132
200 -0.085 0.00910 -0.236 0.00838 -0.080 0.00915 -0.072 0.00925
14.8 0.074 0.00910 0.009 0.00107 0.081 0.00099 0.009 0.00094

Table 6: Models for the absolute values of the negative log-returns of the PSI 20 (r
= number of upper order statistics; r = 50 corresponds to a threshold of u ≈ 0.029

The values in all the second lines correspond to the standard errors of the estimates.
For the EPM and for the GPWM m = 1000 bootstrap samples were used. A return
period of T = 1000 was used.

Best method: Not so evident as with the positive log-returns. Maybe the GPWM is

the best option.
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Case study (cont.)

Most appropriate methods: GPWM

What are the consequences on the estimates of the GPD if other
values of T are considered?

r Estimate T = 50 T = 100 T = 1000

50 k̂ -0.083 -0.087 -0.109
σ̂ 0.010 0.010 0.011

75 k̂ -0.080 -0.082 -0.095
σ̂ 0.010 0.010 0.010

100 k̂ -0.105 -0.110 -0.125
σ̂ 0.009 0.009 0.009

125 k̂ -0.074 -0.074 -0.073
σ̂ 0.010 0.010 0.010

150 k̂ -0.143 -0.151 -0.173
σ̂ 0.008 0.008 0.008

200 k̂ -0.080 -0.079 -0.072
σ̂ 0.009 0.009 0.009

Table 7: Models for the negative log-returns of the PSI 20 considering
other return periods
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Case study (cont.)

GPWM extreme quantile estimation:

Tail probability

Left tail 0.01 0.005 0.004 0.003 0.002 0.001
Log-return 0.0425 0.0507 0.0535 0.0572 0.0627 0.0726

Empirical log-return 0.0433 0.0487 0.0517 0.0549 0.0586 0.0609

Right tail 0.01 0.005 0.004 0.003 0.002 0.001
Log-return 0.0371 0.0444 0.0468 0.0501 0.0550 0.0638

Empirical log-return 0.0333 0.0430 0.0439 0.0542 0.0697 0.0883

Table 8: Extreme quantile estimation
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Case study (cont.)

Final comments:

The GPD is a very important distribution in the EVT
framework as an alternative to the classical methods, namely
because it uses the data more e�ciently;

The problem lies in an proper choice of the threshold. There
has to be a "trade-o�"between bias and variance of the
parameter estimators;

This application shows that the proposed "guidelines"seem to
be accurate, although no joint simulation was carried out →
Future work.
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Case study (cont.)

Thank you very much for
your attention :)))
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